Received 14 June 2006

Accepted 4 July 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing Jia, Xiang-Gao Meng, Shao-Min Shi, Zong-Qiu Hu* and Fei-Hua Luo

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: zqhu@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(C-C) = 0.004 \text{ Å}$ Disorder in solvent or counterion R factor = 0.031 wR factor = 0.073 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(dimethylammonium) tris(pyridine-2,6-dicarboxylato- $\kappa^3 N$,O,O')europate(III) dihydrate

In the title compound, $(C_2H_8N)_3[Eu(C_7H_3NO_4)_3]\cdot 2H_2O$, the complex anion lies on a crystallographic twofold rotation axis and the Eu^{III} atom is coordinated by three N and six O atoms from three pyridine-2,6-dicarboxylate ligands, forming a distorted tricapped trigonal prismatic geometry. Dimethyl-ammonium cations and non-coordinated water molecules show positional disorder. The crystal structure is stabilized by intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds.

Comment

The crystal structure of complexes containing the pyridine-2,6dicarboxylate (DPC) Eu^{III} anion, *viz.* Na₃[$Eu(DPC)_3$]·14H₂O (Li *et al.*, 1993) and Cs₃[$Eu(DPC)_3$]·9H₂O (Brayshaw *et al.*, 1995), have been reported previously and its fluorescence has been studied (Yi *et al.*, 2002). We report here the structure of the title compound, (I), which was obtained unexpectedly by hydrothermal synthesis.

The molecular structure of (I) is shown in Fig. 1. There is a crystallographic twofold rotation axis passing through atoms Eu, N2 and C10. The Eu^{III} atom exists in a distorted tricapped trigonal prismatic coordination environment, defined by three N and six O atoms from three pyridine-2,6-dicarboxylate ligands. The Eu–N and Eu–O bond lengths (Table 1) are in good agreement with those reported for similar complexes (Li *et al.*, 1993; Brayshaw *et al.*, 1995). There are one and a half dimethylammonium cations in the asymmetric unit. The N5/C14/C15 cation is is disordered over an inversion center, and the position is shared by two water molecules (O9 and O10), each with half-occupancy. Cations and anions are connected through N–H···O hydrogen bonds (Table 2). There are also O–H···O hydrogen bonds involving the non-coordinated

© 2006 International Union of Crystallography All rights reserved

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Water molecules and one of the cations are disordered and occupy the same position with an occupancy of 0.5. [Symmetry codes: (a) $1 - x, y, \frac{3}{2} - z$; (b) 1 - x, -y, 1 - z; (c) $1 - x, y, \frac{3}{2} - z$].

Figure 2

A view of the hydrogen bonding (dashed lines) in (I). H atoms have been omitted unless they are involved in hydrogen bonds.

water molecules. Intermolecular hydrogen bonds give rise to a two-dimensional network (Fig. 2).

Experimental

The title compound, (I), was obtained unexpectedly. A mixture of $Eu(NO_3)_3$, HL [HL is bis(salicylaldehyde) 2,6-dipicolinoylhydrazone], H₂O and dimethylformamide (DMF) in a 1:2.5:50:50 molar ratio was stirred for 2 h at 353 K, sealed in a 15 ml Teflon-lined stainless steel bomb, kept at 453 K for 96 h, and then cooled slowly to ambient temperature. Colorless block-shaped crystals formed by slow evaporation of the solvent at room temperature over approximately two weeks. X-ray crystal analysis of (I) revealed the unexpected structure, suggesting that pyridine-2,6-dicarboxylic acid and dimethylamine were produced by decomposition of HL and DMF, respectively.

Z = 4

 $D_x = 1.612 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation $\mu = 1.93 \text{ mm}^{-1}$

T = 292 (2) K

Block, colorless

 $0.30 \times 0.20 \times 0.20$ mm

19609 measured reflections

Crystal data

 $(C_2H_8N)[Eu(C_7H_3NO_4)_3]\cdot 2H_2O$ $M_r = 821.59$ Orthorhombic, Pbcn a = 16.9780 (13) Åb = 10.7099 (8) Å c = 18.6170 (14) ÅV = 3385.2 (4) Å³

Data collection

Bruker SMART CCD area-detector	19609 measured reflections
diffractometer	3695 independent reflections
φ and ω scans	2746 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.070$
(SHELXTL; Bruker, 2001)	$\theta_{\rm max} = 27.0^{\circ}$
$T_{\min} = 0.596, T_{\max} = 0.699$	

Refinement

F ł S 3

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0383P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.003$
$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.18 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Eu1-O5	2.442 (2)	Eu1-N1	2.535 (2)
Eu1-O3	2.4456 (18)	Eu1-N2	2.540 (3)
Eu1-O1	2.4667 (19)		
O5-Eu1-O5 ⁱ	87.08 (11)	O5-Eu1-O1 ⁱ	126.71 (6)
O5-Eu1-O3	148.78 (6)	O3-Eu1-O1 ⁱ	77.35 (7)
O5 ⁱ -Eu1-O3	78.27 (7)	O5-Eu1-O1	78.36 (7)
$O3-Eu1-O3^i$	126.56 (8)	O3-Eu1-O1	88.48 (7)

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4 $-$ H4 A ···O3	0.90	2.43	3.118 (3)	134
$N4-H4A\cdots O4$	0.90	1.91	2.785 (3)	163
$N4-H4B\cdots O2^{ii}$	0.90	1.82	2.710 (4)	170
$N5-H5A\cdots O6^{ii}$	0.90	1.73	2.625 (5)	172
$N5-H5B\cdots O6^{iii}$	0.90	2.20	2.949 (5)	140
O9−H9B···O10	0.86	2.08	2.90 (1)	161
$O10-H10A\cdots O5^{ii}$	0.83	2.22	2.97 (2)	151
O10−H10B···O4	0.82	2.39	3.15 (1)	153

Symmetry codes: (ii) $x, -y + 1, z - \frac{1}{2}$; (iii) $-x + 1, y - 1, -z + \frac{3}{2}$.

Two water molecules (O9 and O10) and two methyl groups of one of the cations (N5/C14/C15) occupy nearly the same positions, and are disordered with an occupancy of 0.5, close to an inversion center. H atoms attached to C and N atoms were refined using a riding model, with C-H = 0.93-0.96 Å, N-H = 0.90 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(methyl C)$. The H atoms of water molecules were located in difference maps, and refined with the constraints O-H = 0.82-0.86 Å, H···H = 1.35 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The deepest hole is located near atom Eu1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

We thank Dr Yunfeng Chen (Central China Normal University) for helpful discussions. This work was supported

by the Hubei Education Government of China (grant No. 20040131).

References

- Brayshaw, P. A., Bünzli, J. G. & Froidevaux, P. (1995). Inorg. Chem. 34, 2068– 2076.
- Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, L. S., Chen, D. Q. & Chen, X. T. (1993). Chin. J. Inorg. Chem. 19, 418–422. (In Chinese.)
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yi, X. H. & Tan, M. Y. (2002). Chin. J. Rare Earths, 23, 5-10. (In Chinese.)